
 Current Genomics, 2010, Vol. 11, No. 1 1

 1389-2029/10 $55.00+.00 ©2010 Bentham Science Publishers Ltd.

Simulation of Genes and Genomes Forward in Time

Antonio Carvajal-Rodríguez*

Departamento de Bioquímica, Genética e Inmunología. Universidad de Vigo, 36310 Vigo, Spain

Abstract: The importance of simulation software in current and future evolutionary and genomic studies is just confirmed by the recent

publication of several new simulation tools. The forward-in-time simulation strategy has, therefore, re-emerged as a complement of coa-

lescent simulation. Additionally, more efficient coalescent algorithms, the same as new ideas about the combined use of backward and

forward strategies have recently appeared. In the present work, a previous review is updated to include some new forward simulation

tools. When simulating at the genome-scale the conflict between efficiency (i.e. execution speed and memory usage) and flexibility (i.e.

complex modeling capabilities) emerges. This is the pivot around which simulation of evolutionary processes should improve. In addi-

tion, some effort should be made to consider the process of developing simulation tools from the point of view of the software engineer-

ing theory. Finally, some new ideas and technologies as general purpose graphic processing units are commented.

INTRODUCTION

 The importance of in silico approaches in systems biology and
evolutionary studies is translated in an increase of both develop-
ment of new simulation algorithms and in an increasing number of
reviewing works [1-4] trying to deal with the fast growing field of
genetic populations simulation. Therefore, the key role of simula-
tion software in current and future evolutionary and genomic stud-
ies has been recently emphasized, and its use in research is becom-
ing a common place. Moreover, the expectation on increasing use
of forward simulation and the improvement of algorithms [4] seems
to be plenty fulfilled as demonstrated by the several new forward
simulation tools just recently published in less than a year [5-10]. In
addition, more efficient coalescent algorithms continue to appear
[11], the same as new ideas about combined use of backward and
forward strategies [8]. There are also model-based and data-guided
simulation tools oriented to test the performance of disease-marker
association studies, genome annotation, assembly and alignment
tools [3, 12]. Given this plethora of simulation possibilities, the
importance of simulation is not under discussion and forward strat-
egy has already emerged as an alternative to coalescent simulation
[3, 4, 8, 13].

 In the present work, an update of a previous review [4] is per-
formed. This is necessary because that review has become rapidly
outdated due to the above exposed causes. Therefore, new forward
simulation tools including some new algorithms will be analyzed.
The conflict between efficiency and flexibility, i.e. execution speed
and memory usage, versus the capability to model complex demo-
graphic scenarios will be also considered. Possibly, this will be the
pivot around which simulation of evolutionary processes should
improve. It is proposed as well that some effort should be made to
approach the development of genetic simulation programs from the
point of view of standard software engineering techniques [14].
This should help to develop more useful tools for the research
community, facilitating a systematic and professional development,
operation, and maintenance of such tools.

GENETIC SIMULATION OF POPULATIONS

 Simulation of genetic data under plausible evolutionary scenar-
ios is useful to gain insight about the effect of evolutionary and
demographic parameters over the sampled genetic data and also to

*Address correspondence to this author at the Departamento de Bioquímica, Genética e

Inmunología. Universidad de Vigo, 36310 Vigo, Spain; E-mail: acraaj@uvigo.es

test genetic analysis methods [3, 4]. In recent years, the testing of
genetic analysis methods has been extended to include disease-
marker association studies, genome annotation, alignment and as-
sembly tools [3, 12]. Currently, sequence simulation is an important
method to test any of such new genome tools. This occurs because
events as compositional bias, phylogenetic correlations, heteroge-
neous substitutions, indel rates, context-dependent mutation etc,
change the information attached to the DNA sequence reducing the
effectiveness of annotation and assembly tools [12]. Some of these
methods have been based on simulating the phylogenies under more
or less complex models of DNA sequence evolution, for example
DAWG [15] allows for the inclusion of indels the same as SIM-
GENOME [12], which also includes integrated parameter estima-
tion. EvolSimulator [16] is also phylogenetic based model, which
evolves prokaryote genomes allowing lateral gene transfer. The
above methods are specially focused on the impact of the different
mentioned evolutionary facts onto the alignment methods at the
genome scale. The common feature about these models is that they
evolve sequences through a phylogenetic tree given an evolutionary
Markovian or hidden Markovian model. However, such programs
do not consider the evolution at population level with a mating
system, mutation, recombination etc. An exception seems to be
EvolSimulator, which study the effects of some evolutionary events
onto the phylogeny jointly with settings at the population level. On
the other side, the coalescent has been the most extended model-
based method of population genetics simulation in the last decade,
however, the exact coalescence method loss its efficiency when
simulating genomes (megabase scale) with recombination [11].
This has led to new coalescence approaches allowing a more effi-
cient simulation of large genome regions with recombination. GE-
NOME, for example, simulates the genealogy in a generation-step
basis instead of time-to-next-event basis. SMC (Sequentially
Markov Coalescent) [17] and MaCS (Markovian Coalescent Simu-
lator) [11] simulate the genealogy beginning with a local tree that is
constant for a given region flanked by two successive recombina-
tion events. Recombination is always considered as a Markovian
process i.e. the modification of the given tree is independent at each
recombination time in the case of SMC and only with recombina-
tion events that are far apart in the case of MaCS. Other modifica-
tions of previous coalescent programs continue to appear to include
more complex models or situations, as for example selection at
biallelic loci [18]. In any case, if the interest is focused on simulat-
ing evolution under complex and realistic evolutionary and demo-
graphic scenarios, the, less efficient, forward simulation should be
preferred [4]. Therefore, a conflict exists between efficiency and

2 Current Genomics, 2010, Vol. 11, No. 1 Antonio Carvajal-Rodríguez

flexibility, the more complex the model the less efficient the simu-
lation, and vice versa. The aim should be to get complex simulation
models keeping efficiency as much as possible.

A BRIEF VIEW ON FORWARD POPULATION GENETIC

SIMULATORS

 In Table 1 some forward simulators are given jointly with their

web links and the programming language, in which they are imple-

mented. Since many of them have already been reviewed [3, 4] and

they are all available via web, here I will just briefly emphasize

some of them. BottleSim simulates population bottlenecks, it in-

cludes an overlapping generation model [19]. EasyPop [20] allows

generating genetic data for haploid, diploid, and haplodiploid or-

ganisms under a variety of mating systems. EvolveSimulator [16]

simulates prokaryote genomes without recombination focusing

specially in lateral gene transfer. FPG [21] simulates a broad range

of conditions including natural selection, recombination, and migra-

tion, however, is somewhat limited by the genome size it can man-

age. FREGENE [5] simulates complex demographic and evolution-

ary models similarly to GenomePop [9]. KernelPop [22] and

NEMO [23] implement individual-based, spatially explicit models.

KernelPop uses the R environment [24]. Mendel's Accountant [25]

performs forward-time population simulations and can be supported

on parallel cluster computers. quantiNEMO [26] allows to investi-

gate the effects of selection, mutation, recombination, and drift on

quantitative traits. SFS_CODE [7] allows for a context dependent

mutation model (including CpG-effects), synonymous and non-

synonymous mutations, etc. SimuPop [27] simulates complex

demographic and evolutionary models. Including R/Splus-like envi-

ronment the users can program their own scripts in Phython. It can

be supported on parallel cluster computers. The great advantage of

SimuPop is its flexibility, which permits fast evolution of the pro-

gram to include new features as for example non-random mating

models [28] and, hence, permits the interested users to perform

their own models. The main disadvantage of SimuPop is due to the

aforementioned trade-off between flexibility and efficiency. The

scripting or dynamic programming language has the inconvenience

of less efficiency than other non dynamic languages as C++ and

this will be evident when largest population sizes, sequence length

and/or generation number must be simulated. On the other side, it is

forwsim [8], which implements a very efficient simulator but with

somewhat limited model options. To do so, it uses a forward-

backward scheme i.e. exploits the genealogical information of sev-

eral generations instead on a one-generation basis and building on

such information simulates only the chromosomes that will contrib-

ute to the future population. Therefore, forwsim could imply a gain

in time efficiency of up to one order of magnitude when comparing

with other forward simulation tools [8]. However, such gain is done

at the cost of only one recombination event per meiosis and limited

options for mutation, migration, and selection models. Other pro-

grams as Fregene and Genomepop present a good compromise

between efficiency and flexibility. Fregene [5] is oriented to genetic

epidemiology allowing for ascertained gene sampling via the ac-

companying program Sample. It performs various forms of selec-

tion permitting to track the history of sites under selection. As a

drawback, the program only manages diallelic SNPs data. Genome-

pop does not perform ascertained gene sampling, although can

manage both diallelic and more complex nucleotide or codon mod-

els. However, the later is done at the cost of slightly less efficiency.

A MODEL FOR THE SIMULATOR REQUIREMENTS

DOCUMENT (SRD)

 This section borrows some concepts from software engineering

theory [14] and modify them to apply to the specific case of devel-

opment of free and public simulation tools for the field of evolu-

tionary biology. It is true that a new software tool is typically pub-

lished as a computer note in some scientific journal. However, this

note is usually just a brief description of the tool with, at best, some

Table 1. Forward Simulators

Name Web link PL

BottleSim http://chkuo.name/software/BottleSim.html C++

EasyPop http://www.unil.ch/dee/page36926_fr.html C

EvolSimulator http://www.bioinformatics.org.au/evolsim/ C++

ForSim [6] http://www.anthro.psu.edu/weiss_lab/research.shtml#ForSim C++

forwsim http://www.people.cornell.edu/pages/bp85/ C++

FPG http://lifesci.rutgers.edu/~heylab/HeylabSoftware.htm#FPG C

FREGENE http://www.ebi.ac.uk/projects/BARGEN/download/FREGEN/documentation_html.html C++

GenomePop http://webs.uvigo.es/acraaj/GenomePop.htm C++

KernelPop http://cran.r-project.org/web/packages/kernelPop/index.html C++R

Mendel's Accountant http://mendelsaccountant.info/ F, C

NEMO http://sourceforge.net/projects/nemo2 C++Java

quantiNEMO http://www2.unil.ch/popgen/softwares/quantinemo/ C++

Rmetasim [29] http://linum.cofc.edu/software.html C++ R

SFS_CODE http://cbsuapps.tc.cornell.edu/sfscode.aspx C

SimuPop http://simupop.sourceforge.net/ P C++

PL: Programming Language. F: Fortran. P: Phyton.

Simulation of Genes and Genomes Forward in Time Current Genomics, 2010, Vol. 11, No. 1 3

methodological explanation and an example case. The goal from

the software engineering view should be to specify as much as pos-

sible the needs or conditions to meet for the new simulator. This

will help both the developer and the researcher. That is, the specifi-

cation should explain exactly what the software performs so that the

user can take advantage on that. In addition, and because the inter-

est is most of the times not commercial but scientific, it will also be

desirable to explain how the software executes the task in order that

anyone, if desired, can reproduce and/or improve it by himself.

There are some standards for such kind of documents as that of

European Space Agency [30, 31]. Of course a given evolutionary

biology simulation project should be very much simpler than a

given system for industry but we can borrow some useful ideas

from that kind of documents.

 I am proposing the simulation requirements document (SRD)
that should be a complete description of the behavior of the system
to be developed (Table 2). It should include a set of use cases, also
called functional requirements, describing as much as possible the
interactions that the users will have with the software. In addition,
the SRD also contains nonfunctional (or supplementary) require-
ments as performance, accessibility, availability, limit values etc.
After the development of the program, the SRD should help the
users to know what the software exactly can and cannot do. In Ta-
ble 2, a list of possible items included in the document is given. We
distinguish five main parts in the SRD: Introduction, General De-
scription, Specific Requirements, Design, and Verification & Vali-
dation.

Table 2. The Simulator Requirements Document (See Text for De-

tails)

Simulator Requirements Document

Introduction

Objective

Context

Index

General Description

Context

Main objectives and tasks

Connection with other software

Model

Formats

Specific Requirements

Functional

Technical

Design

Classes, Objects

Verification & Validation

Test cases, Fulfilled goals

Introduction

 This section just gives a brief overview on the whole SRD. It
can be subdivided in Objective, i.e. the global goal of the project
and for who is intended the program; Field or context, i.e. brief
description of what the program can and cannot do and the context

where the software applies possible benefits of doing so. Finally, a
reference list and an Index of the remaining sections of the SRD
should be given. Optionally a glossary of terms and abbreviations
can also be attached to this introductory section.

General Description

 This section should give a general view onto the system, includ-
ing the context where the project apply, the version and relationship
with previous projects, objectives and main tasks that the software
is able to perform. Putative links or pipelines with other software
can also be mentioned here the same as general restrictions i.e.
software platform, hardware, programming language etc. A descrip-
tion of the conceptual model that the system develops including
main sub-models, data structures, and input-output formats can also
be given here. An example of the later could be: “forward-in-time,
spatially-explicit software with three main sub-modules, input,
evolution, output. The input format will be fasta-like the same as
the output and the genetic information will be biallelic as the soft-
ware manages bit strains to represent the different loci”.

Specific Requirements

 Detailed list of what the system is supposed to do. It can be
divided in functional and technical requirements. Functional will
include input, output, and important functions that the software
should perform. For example: “the program should read sequence
data in fasta-like format with each sequence identifier beginning
with > and the sequence being a set of 0 and 1’s. The sequence
identifier should appear in different line that the sequence, etc. The
output is in the same format as the input. The program simulates a
forward-in-time evolutionary model at the megabase scale”. Here,
different important functions can be explicitly mentioned as muta-
tion, recombination, migration, etc. Different sets of use cases
should be given describing the potential interactions of the user
with the software. Technical requirements refer to the program
minimum and maximum capacities e.g. “the program will be able to
run a population of minimum N = 2 to a maximum of N = 10

6
 indi-

viduals with a 100 megabase genome during 6N generations in less
than an hour in a personal computer with 1 Gb ram. Higher values
of N will run more or less efficiently depending on the processor
and memory requirements. Recombination values as low as 0 and
as high as 0.5 can be used…” etc. More technical information, as
type of memory allocation needed to fulfill specific data manage-
ment etc, should also be given here, though how the specific im-
plementation of such structures is done corresponds better with the
next section (design).

Design

 This section could be included in the SRD or could be an inde-
pendent document by itself. The section should provide a detailed
definition and structure of the system so that any developer other
than the designer can reproduce it. For example, if an object ori-
ented design is used, the structure of classes should be given here.
More specific information on data structures will also be given here
if it was not done in the model description section above. Finally,
the source code can accompany this section. Giving the source
code, however, should not substitute the specific and detailed in-
formation in the Design section.

Verification & Validation

 This section of the SRD will explain how the software was
tested and validated. Verification tries to ensure that the software
works right, for example check that the processes of mutation and
recombination are working as expected. Validation ensures that the
software performs what was intended for. The last could seem quite
obvious in this context but having explicitly this item could help on
the success of the project. Consider for example a case where the

4 Current Genomics, 2010, Vol. 11, No. 1 Antonio Carvajal-Rodríguez

specified goal was to evolve genomes under complex models of
evolution and demography. To validate such goal it is not enough
that the program runs in assumable time a few sequence kilobases
but at least should do that at the megabase scale.

DISCUSSION

 Due to the high number of recent simulators, especially forward
ones, the potential user can be unsure which of them to choose.
Additionally, it could be that no simulator adapt to the specific
necessities. Unfortunately, it is not uncommon that the user has
difficulties on knowing exactly what the software can and cannot
do.

 As simulation tools become more flexible, the incorporation of
some standards for documentation seems to be important because it
will facilitate both the development of more useful tools for the
research community jointly with a systematic and qualified im-
provement, operation, and maintenance of such tools. For example,
performing the SRD for a given simulation project should try to
answer questions like, kind of marker to model, implications of
modeling such one, what evolutionary and demographic contexts
are noteworthy given it. How the input and output should be, and
what programs, if any, would be interesting to pipeline with the
new tools. Specifying the functional requirements part will help to
think about most efficient ways of performing mutation, recombina-
tion, and migration, which will be reflected in the design section,
but will also help the user to know exactly what specific models
he/she can and cannot run using such program. Obviously, the tar-
get is always to get software as good as possible regarding proper-
ties as maintainability, reliability, efficiency, and usability [14].

 With the advent of more powerful computers and the memory
cheapening, the trade-off between flexibility and efficiency is con-
tinuously being reset by more powerful and flexible programs,
which also improve efficiency with respect to previous ones. How-
ever, as far as more and more genomic and proteomic information
is at hand the conflict prevails, consider for example the kind of
new algorithms combining backward and forward simulation gain-
ing the necessary efficiency for managing genomes in assumable
time but somewhat loosing the characteristic flexibility of forward-
in-time simulation. Hence, new technologies could contribute to the
improvement of algorithms to allow both high flexibility and effi-
ciency. One of such is the modern graphical process units (GPUs),
which are specialized processors with highly parallelized structure
that makes them very efficient for floating point calculations. One
of this parallel computing architecture is Cuda, which interestingly
provides the possibility to code algorithms for execution on the
GPU via standard programming languages as C by using some
language extensions as the Cuda programming environment re-
cently released by NVIDIA [32]. Such programming environments
that allow the use of GPUs for general purpose programming, the
so-called GPGPUs [33] are beginning to be employed for solving
computational biology oriented problems [34, 35] with improve-
ments of up to two orders of magnitude with respect to standard
CPU implementations.

ACKNOWLEDGMENTS

 I am grateful to Andrés Pérez-Figueroa for useful comments on
the manuscript. I am currently funded by an Isidro Parga Pondal
research fellowship from Xunta de Galicia (Spain).

REFERENCES

[1] Di Ventura, B.; Lemerle, C.; Michalodimitrakis, K.; Serrano, L. From in vivo

to in silico biology and back. Nature, 2006, 443, 527-533.
[2] Mode, C.J.; Gallop, R.J. A review on Monte Carlo simulation methods as

they apply to mutation and selection as formulated in Wright-Fisher models

of evolutionary genetics. Math. Biosci., 2008, 211, 205-225.
[3] Liu, Y.; Athanasiadis, G.; Weale, M.E. A survey of genetic simulation soft-

ware for population and epidemiological studies. Hum Genomics, 2008, 3,

79-86.
[4] Carvajal-Rodriguez, A. Simulation of Genomes: A Review. Curr. Genomics,

2008, 9, 155-159.
[5] Chadeau-Hyam, M.; Hoggart, C.; O'Reilly, P.; Whittaker, J.; De Iorio, M.;

Balding, D. Fregene: Simulation of realistic sequence-level data in popula-
tions and ascertained samples. BMC Bioinformatics, 2008, 9, 364.

[6] Lambert, B.W.; Terwilliger, J.D.; Weiss, K.M. ForSim: a tool for exploring

the genetic architecture of complex traits with controlled truth. Bioinformat-

ics, 2008, 24, 1821-1822.

[7] Hernandez, R.D. A flexible forward simulator for populations subject to
selection and demography. Bioinformatics, 2008, 24, 2786-2787.

[8] Padhukasahasram, B.; Marjoram, P.; Wall, J.D.; Bustamante, C.D.; Nord-
borg, M. Exploring Population Genetic Models With Recombination Using

Efficient Forward-Time Simulations. Genetics, 2008, 178, 2417-2427.
[9] Carvajal-Rodriguez, A. GENOMEPOP: A program to simulate genomes in

populations. BMC Bioinformatics, 2008, 9, 223.
[10] Parreira, B.; Trussart, M.; Sousa, V.; Hudson, R.; Chikhi, L. SPAms: A user-

friendly software to simulate population genetics data under complex demo-
graphic models. Mol. Ecol. Resour., 2009, 9, 749-753.

[11] Chen, G.K.; Marjoram, P.; Wall, J.D. Fast and flexible simulation of DNA

sequence data. Genome Res., 2009, 19, 136-142.
[12] Varadarajan, A.; Bradley, R.K.; Holmes, I.H. Tools for simulating evolution

of aligned genomic regions with integrated parameter estimation. Genome

Biol., 2008, 9, R147.

[13] Kim, Y.; Wiehe, T. Simulation of DNA sequence evolution under models of
recent directional selection. Brief Bioinform, 2009, 10, 84-96.

[14] Sommerville, I. Software engineering. 8th ed.; Addison-Wesley: Harlow,
2007; p XXIII, 840 s.

[15] Cartwright, R.A. DNA assembly with gaps (Dawg): simulating sequence
evolution. Bioinformatics, 2005, 21 Suppl 3.

[16] Beiko, R.G.; Charlebois, R.L. A simulation test bed for hypotheses of ge-
nome evolution. Bioinformatics, 2007, 23, 825-831.

[17] Marjoram, P.; Wall, J.D. Fast "coalescent" simulation. BMC Genet, 2006, 7,

16.
[18] Teshima, K.; Innan, H. mbs: modifying Hudson's ms software to generate

samples of DNA sequences with a biallelic site under selection. BMC

Bioinformatics, 2009, 10, 166.

[19] Kuo, C.H.; Janzen, F.J. Bottlesim: a bottleneck simulation program for long-
lived species with overlapping generations. Mol. Ecol., 2003, 3, 669-673.

[20] Balloux, F. EASYPOP (version 1.7): a computer program for population
genetics simulations. J. Hered, 2001, 92, 301-302.

[21] Hey, J. FPG: A computer program for forward population genetics simula-

tion.

[22] Strand, A.E.; Niehaus, J.M. kernelpop, a spatially explicit population genetic
simulation engine. Mol. Ecol. Notes, 2007, 7, 969-973.

[23] Guillaume, F.; Rougemont, J. Nemo: an evolutionary and population genet-

ics programming framework. Bioinformatics, 2006, 22, 2556-2557.
[24] R Development Core Team R: A language and environment for statistical

computing. http://www.R-project.org
[25] Sanford, J.; Baumgardner, J.; Brewer, W.; Gibson, P.; Remine, W. Mendel's

Accountant: A biologically realistic forward-time population genetics pro-
gram. SCPE, 2007, 8, 147-165.

[26] Neuenschwander, S.; Hospital, F.; Guillaume, F.; Goudet, J. quantiNemo: an
individual-based program to simulate quantitative traits with explicit genetic

architecture in a dynamic metapopulation. Bioinformatics, 2008, 24, 1552-
1553.

[27] Peng, B.; Kimmel, M. simuPOP: a forward-time population genetics simula-

tion environment. Bioinformatics, 2005, 21, 3686-3687.
[28] Peng, B.; Amos, C. I. Forward-time Simulations of Nonrandom Mating

Populations using simuPOP. Bioinformatics, 2009, 25, 1959-1960.
[29] Strand, A. E. metasim 1.0: an individual-based environment for simulating

population genetics of complex population dynamics. Mol. Ecol. Notes,
2002, 2, 373-376.

[30] Control, E.B. f. S. S. a. Software Engineering Standards; 2; European Space
Agency: 1991.

[31] Jones, M.C.; Mortensen, U.K.; Fairclough, J. In The ESA Software Engineer-

ing Standards: Past, Present and Future, 3rd International Software

Engineering Standards Symposium (ISESS '97), 1997; p 119.
[32] NVIDIA Corp NVIDIA CUDA (Compute Unified Device Architecture)

Programming Guide, Version 1.0.; 2007.

[33] Owens, J.D.; Luebke, D.; Govindaraju, N.; Harris, M.; Kruger, J.; Lefohn,
A.E.; Purcell, T.J. A survey of general-purpose computation on graphics

hardware. Comput. Graph. Forum, 2007, 26, 80-113.
[34] Manavski, S.A.; Valle, G. CUDA compatible GPU cards as efficient hard-

ware accelerators for Smith-Waterman sequence alignment. BMC Bioinfor-

matics, 2008, 9 Suppl 2, S10.

[35] Dynerman, D.; Butzlaff, E.; Mitchell, J.C. CUSA and CUDE: GPU-
Accelerated Methods for Estimating Solvent Accessible Surface Area and

Desolvation. J. Comput. Biol., 2009, 16, 523-537.

